{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# AI Trainer for Qwen Models on Google Colab (T4 GPU)\n", "\n", "This notebook allows you to train Qwen models on GitHub repositories using Google Colab's T4 GPU with 13GB VRAM." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Setup Environment\n", "\n", "First, let's install the required dependencies." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Install required packages\n", "!pip install unsloth[cu121] bitsandbytes\n", "!pip install transformers datasets\n", "!pip install accelerate peft\n", "!pip install GitPython PyYAML" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Set environment variables for optimal GPU performance\n", "import os\n", "os.environ['CUDA_VISIBLE_DEVICES'] = '0'\n", "os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'\n", "os.environ['TOKENIZERS_PARALLELISM'] = 'false'\n", "os.environ['DISABLE_TORCH_COMPILE'] = '1'\n", "\n", "print(\"Environment variables set successfully!\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Import Libraries\n", "\n", "Let's import all necessary libraries." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import torch\n", "from unsloth import FastLanguageModel\n", "from trl import SFTTrainer\n", "from transformers import TrainingArguments\n", "import git\n", "from pathlib import Path" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3. Configuration\n", "\n", "Configuration optimized for T4 GPU with 13GB VRAM." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Model configuration\n", "MODEL_NAME = \"unsloth/Qwen2.5-Coder-7B-Instruct-bnb-4bit\"\n", "MAX_SEQ_LENGTH = 2048\n", "\n", "# Training configuration for T4 GPU (13GB VRAM)\n", "TRAINING_CONFIG = {\n", " 'per_device_train_batch_size': 1,\n", " 'gradient_accumulation_steps': 8,\n", " 'max_steps': 100,\n", " 'learning_rate': 2e-4,\n", " 'use_gradient_checkpointing': True,\n", " 'bf16': True\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 4. Load Model\n", "\n", "Load the Qwen model with Unsloth for memory efficiency." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Load model and tokenizer\n", "model, tokenizer = FastLanguageModel.from_pretrained(\n", " model_name=MODEL_NAME,\n", " max_seq_length=MAX_SEQ_LENGTH,\n", " dtype=None,\n", " load_in_4bit=True,\n", ")\n", "\n", "# Configure model for training\n", "model = FastLanguageModel.get_peft_model(\n", " model,\n", " r=16,\n", " target_modules=[\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"],\n", " lora_alpha=16,\n", " lora_dropout=0,\n", " bias=\"none\",\n", " use_gradient_checkpointing=TRAINING_CONFIG['use_gradient_checkpointing'],\n", " random_state=3407,\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 5. Process GitHub Repositories\n", "\n", "Extract code from GitHub repositories for training." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def process_github_repo(repo_url):\n", " \"\"\"Process a GitHub repository and extract code samples\"\"\"\n", " import tempfile\n", " from datasets import Dataset\n", " \n", " with tempfile.TemporaryDirectory() as temp_dir:\n", " # Clone repository\n", " repo_name = repo_url.split('/')[-1].replace('.git', '')\n", " repo_path = f\"{temp_dir}/{repo_name}\"\n", " \n", " print(f\"Cloning {repo_url}...\")\n", " repo = git.Repo.clone_from(repo_url, repo_path, depth=1)\n", " \n", " # Extract Python files as example\n", " code_samples = []\n", " py_files = Path(repo_path).rglob('*.py')\n", " \n", " for py_file in list(py_files)[:10]: # Limit to first 10 files\n", " try:\n", " with open(py_file, 'r', encoding='utf-8', errors='ignore') as f:\n", " content = f.read()\n", " \n", " if len(content.strip()) > 10: # Skip tiny files\n", " code_samples.append({\n", " 'text': content,\n", " 'repo_name': repo_name,\n", " 'file_path': str(py_file.relative_to(repo_path))\n", " })\n", " except Exception as e:\n", " print(f\"Error processing {py_file}: {e}\")\n", " continue\n", " \n", " return Dataset.from_list(code_samples)\n", "\n", "# Example usage (replace with your own repositories)\n", "# dataset = process_github_repo(\"https://github.com/your-username/your-repo.git\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 6. Training\n", "\n", "Set up and run the training process." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Create a simple example dataset if you don't have your own\n", "from datasets import Dataset\n", "\n", "# Example dataset - replace with your own data\n", "example_data = [\n", " {\"text\": \"def hello_world():\\n print('Hello, World!')\"},\n", " {\"text\": \"class Calculator:\\n def add(self, a, b):\\n return a + b\"},\n", " {\"text\": \"import numpy as np\\n\\narr = np.array([1, 2, 3])\\nprint(arr)\"}\n", "]\n", "\n", "dataset = Dataset.from_list(example_data)\n", "print(f\"Example dataset created with {len(dataset)} samples\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Tokenize dataset\n", "def tokenize_function(examples):\n", " # Simple tokenization - replace with more sophisticated approach for your use case\n", " return tokenizer(examples[\"text\"], truncation=True, padding=\"max_length\", max_length=512)\n", "\n", "tokenized_dataset = dataset.map(tokenize_function, batched=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Set up trainer\n", "trainer = SFTTrainer(\n", " model=model,\n", " tokenizer=tokenizer,\n", " train_dataset=tokenized_dataset,\n", " dataset_text_field=\"text\",\n", " max_seq_length=MAX_SEQ_LENGTH,\n", " packing=True,\n", " args=TrainingArguments(\n", " per_device_train_batch_size=TRAINING_CONFIG['per_device_train_batch_size'],\n", " gradient_accumulation_steps=TRAINING_CONFIG['gradient_accumulation_steps'],\n", " max_steps=TRAINING_CONFIG['max_steps'],\n", " learning_rate=TRAINING_CONFIG['learning_rate'],\n", " fp16=not TRAINING_CONFIG['bf16'],\n", " bf16=TRAINING_CONFIG['bf16'],\n", " logging_steps=1,\n", " save_steps=50,\n", " output_dir=\"./model_output\",\n", " optim=\"adamw_torch\",\n", " lr_scheduler_type=\"cosine\",\n", " warmup_ratio=0.1,\n", " ),\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Start training\n", "print(\"Starting training...\")\n", "trainer.train()\n", "print(\"Training completed!\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 7. Save Model\n", "\n", "Save the trained model." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Save the model\n", "model.save_pretrained(\"./trained_model\")\n", "tokenizer.save_pretrained(\"./trained_model\")\n", "print(\"Model saved successfully!\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "name": "python", "version": "3.10.0" } }, "nbformat": 4, "nbformat_minor": 4 }